Technology Solutions: Creating a Sustainable Biofuels Future

Jennifer Holmgren UOP LLC

Biomass 2009: Fueling Our Future

March 17-18, 2009

National Harbor, Maryland

UOP

- Leading supplier and licensor of process technology, catalysts, adsorbents, process plants, and technical services to the petroleum refining, petrochemical, and gas processing industries
- UOP technology furnishes 60% of the world's gasoline, 85% of the world's biodegradable detergents, and 60% of the world's para-xylene
- Strong relationships with leading refining and petrochemical customers worldwide
- UOP's innovations enabled lead removal from gasoline, biodegradable detergents, and the first commercial catalytic converter for automobiles

Biofuels: Next in a Series of Sustainable Solutions

Macromarket Summary: Through 2015

Biofuels Growth

- Global energy demand is expected to grow at CAGR 1.6%.
 - Feedstock diversity will become increasingly important over this period with coal, natural gas & renewables playing bigger roles.
- Fossil fuels are expected to supply 83% of energy and 95% of liquid transportation needs
- Biofuels are expected to grow at 8-12%/year to
 2.2 MBPD

Key: Overlaying Sustainability Criteria on Alternatives (GHG, water etc.)

Source: IEA, 2008

Biofuels Overview: Technology Pathways

Current biofuel market based on sugars & oils. Use bridging feedstocks to get to 2nd Gen feeds – Algae & Lignocellulosics

Ecofining™ Green Diesel

- Superior technology that produces diesel, rather than an additive
- Uses existing refining infrastructure, can be transported via pipeline, and can be used in existing automotive fleet
- Two units licensed in Europe with first commercial start-up in 2010
- Excellent blending component, allowing refiners to expand diesel pool by mixing in "bottoms"
- Excellent results from carmaker tests

Process Comparison vs. Biodiesel

Performance Comparison

	Petrodiesel	Biodiesel	Green Diesel
NOx	Baseline	+10	-10 to 0
Cetane	40-55	50-65	75-90
Cold Flow Properties	Baseline	Poor	Excellent
Oxidative Stability	Baseline	Poor	Excellent

Green Jet Fuel (Bio Synthetic Paraffinic Kerosene)

- DARPA-funded project to develop process technology to produce military jet fuel (JP-8) from renewable sources
- Leverages diesel Ecofining process technology for jet fuel
- Green Jet Fuel can meet all the key properties of petroleum derived aviation fuel, flash point, cold temperature performance, etc.
- Extend to commercial aircraft

Built on Ecofining Technology

DARPA Project Partners

Key Properties of Green Jet

Description	Jet A-1 Specs	Jatropha Derived SPK	Camelina Derived SPK	Jatropha/ Algae Derived SPK
Flash Point, °C	Min 38	46.5	42.0	41.0
Freezing Point, °C	Max -47	-57.0	-63.5	-54.5
JFTOT@300°C				
Filter dP, mmHg	max 25	0.0	0.0	0.2
Tube Deposit Less Than	< 3	1.0	<1	1.0
Net heat of combustion, MJ/kg	min 42.8	44.3	44.0	44.2
Viscosity, -20 deg C, mm ² /sec	max 8.0	3.66	3.33	3.51
Sulfur, ppm	max 15	<0.0	<0.0	<0.0

Over 6000 US Gallons of SPK made using UOP process

Completed Flight Demonstrations

 Successful ANZ Flight Demo Date: December 30 2008

 Successful CAL Flight Demo Date: Jan. 7 2009

 Successful JAL Flight Demo Date: Jan. 30 2009

Algae – Multiple Sources for Fuels

UOP Renewables Vision

- Produce <u>real</u> fuels instead of fuel additives/blends
- Leverage existing refining, transportation, energy, biomass handling infrastructure to lower capital costs, minimize value chain disruptions, and reduce investment risk.
- Focus on path toward second generation feedstocks & chemicals

Fatty Acid Profile of Algal Oils Tested at UOP

Fatty Acid Profile of Algal Oils

Solazyme Algal Oil: Processing

- Solazyme algal oil composition is very similar to other natural fats and oils processed successfully
- As received Solazyme algal oil processed in pilot plant
- Processed under typical stage 1 (deoxygenation) conditions
- Plant started up with vegetable oils then switched to Solazyme algal oil – direct comparison

Properties of Solazyme Green Diesel

Density (g/ml)	0.78
API gravity	49.8
Sulfur, ppm	12
Nitrogen ppm	<2
Flash, °C	65.5
Cloud point, °C	-4
Pour point, °C	-6
CFPP, °C	-8

Solazyme Algal Oil Can be Converted to "True" Diesel Fuel at High Yield With Desirable Properties

Sapphire Algal Oil: Processing

Deoxygenation: Standard conditions

- Clear, colorless product, deoxygenation essentially complete
- Product difference relative to soybean oil paraffin reflective of feedstock and processing variables

Component	Typical Soy Product (mass %)	Sapphire Algal Oil Product (Mass %)
<c<sub>15</c<sub>	0.9	2.1
C ₁₅ iso	<0.1	1.1
C ₁₅ n	3.2	12.3
C ₁₆ iso	0.1	1.7
C ₁₆ n	6.6	12.8
C ₁₇ iso	1.0	2.1
C ₁₇ n	29.2	30.0
C ₁₈ iso	2.2	2.3
C ₁₈ n	54.7	29.8
>C ₁₈	2.1	5.7

Aquaflow Deoxygenation Product

Component	Typical Product (mass %)	Algal Oil Product (Mass %)
<c<sub>15</c<sub>	0.9	6.8
C ₁₅ iso	<0.1	1.8
C ₁₅ n	3.2	12.4
C ₁₆ iso	0.1	1.7
C ₁₆ n	6.6	13.6
C ₁₇ iso	1.0	3.0
C ₁₇ n	29.2	14.6
C ₁₈ iso	2.2	10.5
C ₁₈ n	54.7	14.6
>C ₁₈	2.1	21.6

- Crude Algal oil deoxygenated (98+%) in laboratory autoclave reactor
- More heavy hydrocarbon than typical oil feeds observed

Integrated Algal Biorefinery

Maximize Total Product Value Cross Industry Overlay

Scope of Jet Fuel WTW* LCA

^{*}WTW for jet fuel is "well-to-wake"

Life Cycle Analysis for Bio-SPK

Significant GHG Reduction Potential

Basic Data for Jatropha Production and Use. Reinhardt, Guido et al. IFEU June 2008
Biodiesel from Tallow. Judd, Barry. s.l.: Prepared for Energy Efficiency and Conservation Authority, 2002.
Environmental Life-Cycle Inventory of Detergent-Grade Surfactant Sourcing and Production. Pittinger, Charles et al. 1,
Prarie Village, Ka: Journal of the American Oil Chemists' Society, 1993, Vol. 70.

UOP Renewables Vision

- Produce <u>real</u> fuels instead of fuel additives/blends
- Leverage existing refining, transportation, energy, biomass handling infrastructure to lower capital costs, minimize value chain disruptions, and reduce investment risk.
- Focus on path toward second generation feedstocks & chemicals

Pyrolysis Oil to Energy & Fuels Vision

Transport Fuels already achieved on lab-scale Collaboration with DOE, NREL, PNNL, USDA

UOP / Ensyn Joint Venture

- Announced September 2008
- Pyrolysis Oil technology for fuel oil substitution & electricity generation now available
- JV becomes channel for UOP R&D results on upgrading pyrolysis oil to transport fuels

- Core competence in engineering and technology scale-up
- Co-inventor of Fluidised Catalytic Cracking (FCC) technology
- Modular process unit supplier
- Leader in fundamental catalyst and process development (Upgrading)

- ~20 years of commercial fast pyrolysis operating experience in food industry
- Developers of innovative RTP fast pyrolysis process
- 8 commercial RTP units designed for food application
- Now applying technology to fuel oil and energy

2nd Gen Renewable Energy Company – Global Reach

Rapid Thermal Process (RTP™) Technology

Pyrolysis Oil

Solid Biomass

- 510°C, <2 secs
- Biomass converted to liquid pyrolysis oil
- Fast fluidized bed, sand as heat carrier
- High yields; >70 wt% liquid on woody biomass
- Light gas and char by-product provide heat to dry feed and operate unit

Proven Technology, full scale designs available

RTPTM Pyrolysis Oil Properties

- Contains ~60% the energy content of crude-based fuel oils
- High viscosity and acidity
- ~40% oxygen content
- Pourable and transportable liquid fuel

Comparison of Heating Value of Pyrolysis Oil and Typical Fuels

Fuel	MJ / Litre	BTU / US Gallon
Methanol	17.5	62,500
Pyrolysis Oil (Wood)	21.0	75,500
Pyrolysis Oil (Bark)	22.7	81,500
Ethanol	23.5	84,000
Light Fuel Oil / Diesel	38.9	138,500

Pyrolysis Oil Applications

- Current Applications
- Emerging Applications — •

Achieving Sustainability

- Renewables are going to make up an increasing share of the future fuels pool
 - Multitude of bioprocessing approaches possible
 - Fungible biofuels are here
 - Essential to overlay sustainability criteria
- First generation biofuels, though raw material limited, are an important first step to creating a biofuels infrastructure. Bridging feedstocks are key.
- Second generation feedstocks, cellulosic waste and algal oils, have the potential to make significant contributions.
- Important to promote technology neutral and performance based standards and directives to avoid standardization on old technology.

Create a Portfolio of Options

Acknowledgements

- AFRL
 - Robert Allen
 - John Datko
 - Tim Edwards
 - Don Minus
- Air New Zealand
 - Grant Crenfeldt
- Aquaflow
 - Paul Dorrington
 - Nick Gerritsen
- Boeing
 - Billy Glover
 - James Kinder
 - Mike Henry
 - Darrin Morgan
 - Tim Rahmes
 - Dale Smith
- Cargill
 - Bruce Resnick
 - Michael Kennedy
 - Ian Purdle
- CFM
 - Gurhan Andac
- Continental Airlines
 - Gary LeDuc
 - Leah Raney
 - George Zombanakis
- Ensyn
 - Robert Graham
 - Barry Freel
 - Stefan Muller

- GE
 - Steve Csonka
 - Mike Epstein
- Japan Airlines
 - Takuya Ishibashi
 - Koichiro Nagayama
 - Yasunori Abe
- Michigan Technical University
 - David Shonnard
- Nikki Universal
 - Yasushi Fujii
 - Masaru Marui
- NREL
 - Richard Bain
- PNNL
 - Doug Elliot
 - Don Stevens
- Pratt & Whitney
 - Tedd Biddle
 - Mario Debeneto
- Rolls Royce
 - Chris Lewis
- Sandia
 - Ron Pate
 - Warren Cox
 - Peter Kobos
 - William Fogleman

- Sapphire
 - Brian Goodall
 - Kulinda Davis
- Solazyme
 - Harrison F. Dillon
 - Anthony G. Day
- South West Research Institute
 - George Wilson
- Sustainable Oils
 - Scott Johnson
- Targeted Growth
 - Tom Todaro
- Honeywell / UOP
 - Amar Anumakonda
 - Roy Bertola
 - Andrea Bozzano
 - Tim Brandvold
 - Michelle Cohn
 - Graham Ellis
 - Tom Kalnes
 - Joseph Kocal
 - Steve Lupton
 - Mike McCall
 - Prabhakar Nair
 - Sunny Nguyen
 - Randy Williams

DOE, Project DE-FG36-05GO15085 Paul Grabowski

DARPA, Project W911NF-07-C-0049 Dr. Douglas

Kirkpatrick

UOP 5139-30

Teşekkür ederim Nodan mamomamo Спасибо Thank You Danke schön 감사합니다 Kiitos جزاكم الله خيراً Gum xia Uन् यवा द Ma ado **Merci** Tawdi Terima kasih Sha sha Ang kêun Gracias Maulanenga Efcharisto Añachaykin Hvala Ookini Dekoju Danyavad Spasibo *Grazie* Xie xie どうもありがとう。 Ngiyabonga Arigato Giittus Shukran **Dhannvaad** Gum xia Eso Qujanaq Köszönöm מרסי mersi Wiyarrparlunpaju-yungu